Statistical Operations Data Analysis reveals Savings Potential
The operations data recording systems of modern production facilities contain a treasure trove of data that is too seldom utilized. In order to systematically evaluate this data we have developed Statistical Operations Data Analysis (SODA). Based on obtained results we prepare measures to reduce operating costs and increase productivity in your company.
Statistical Operations Data Analysis – Data treasure instead of data cemetery
Using the data models from Statistical Operations Data Analysis (SODA), the reasons for variations including their statistical significance can be determined and the essential cost drivers identified. Thus effective targeted improvements can be implemented and productivity improvements sustained.
OPEX TOOLBOX FOR EFFECTIVE IMPROVEMENTS
You profit from the innovative concepts developed by our consultants and enhanced by our TARGUS Toolbox, Through the unique combination of numerous methods we utilize synergies and reveal additional potential.
Statistical Operations Data Analysis tailored
The TARGUS-developed Statistical Operations Data Analysis is an effective method to reveal savings potential, especially for complex production processes. Using our tailored data model we can identify relationships which were not earlier apparent. Additionally we can test in advance using Statistical Operations Data Analysis the impact on organization and procedural changes. Unsuspected cause-effect principles lead thereby to individual solutions for your company.
Typical Results from Statistical Operations Data Analysis
- Reduction in consumption
- Improvement of the organization
- Strengthen productivity
- Transparency of the disturbance variables
Statistical Operations Data Analysis in Action
At an aluminum rolled products manufacturer, isolated quality problems occurred which were visible under the microscope. Here it was a matter of physical changes during the production process. The reasons for the quality defect were unknown and could lie in a preproduction stage at a supplier or in an internal production step. To identify the cause of the defect we applied Statistical Operations Data Analysis. We systematically examined internal as well as external factors. The roll data from the last 2 years was retrieved and expanded with quality data from the suppliers.
Through the evaluation of linear and multivariable correlations between the influencing variables and the quality problems by using Statistical Operational Data Analysis we were able to isolate the causes. We determined a connection to several input parameters such as speed and temperature. Based on these factors various optimization measures to significantly reduce the quality problems were implemented and sustainable product quality was achieved.